Refine Your Search

Topic

Search Results

Standard

Fiberboard Crease Bending Test

2019-10-31
CURRENT
J119_201910
This test method is designed to determine the suitability of a painted or unpainted fiberboard for application involving creasing and bending. The specific purpose of the test is to determine whether a given material, properly creased, can be bent along the impressed crease without objectionable failure on the surface of the bend.
Standard

Fiberboard Crease Bending Test

2010-05-10
HISTORICAL
J119_201005
This test method is designed to determine the suitability of a painted or unpainted fiberboard for application involving creasing and bending. The specific purpose of the test is to determine whether a given material, properly creased, can be bent along the impressed crease without objectionable failure on the surface of the bend.
Standard

FIBERBOARD CREASE BENDING TEST

1982-01-01
HISTORICAL
J119_198201
This test method is designed to determine the suitability of a painted or unpainted fiberboard for application involving creasing and bending. The specific purpose of the test is to determine whether a given material, properly creased, can be bent along the impressed crease without objectionable failure on the surface of the bend.
Standard

Fiberboard Crease Bending Test

2005-07-25
HISTORICAL
J119_200507
This test method is designed to determine the suitability of a painted or unpainted fiberboard for application involving creasing and bending. The specific purpose of the test is to determine whether a given material, properly creased, can be bent along the impressed crease without objectionable failure on the surface of the bend.
Standard

FIBERBOARD CREASE BENDING TEST

1987-02-01
HISTORICAL
J119_198702
This test method is designed to determine the suitability of a painted or unpainted fiberboard for application involving creasing and bending. The specific purpose of the test is to determine whether a given material, properly creased, can be bent along the impressed crease without objectionable failure on the surface of the bend.
Standard

Accelerated Exposure of Automotive Exterior Materials Using a Controlled Irradiance Air-Cooled Xenon-Arc Apparatus

2012-11-19
CURRENT
J2019_201211
This SAE Standard specifies the operating procedures for a controlled irradiance, air-cooled xenon-arc apparatus used for the accelerated exposure of various automotive exterior materials. The sample preparation, test durations, and performance evaluation procedures are covered in material specifications of the different automotive manufacturers.
Standard

LOAD DEFLECTION TESTING OF URETHANE FOAMS FOR AUTOMOTIVE SEATING

1994-01-01
HISTORICAL
J815_199401
Cellular foam products have been traditionally checked for load deflection by determining the load required to effect a 25% deflection. In seating, on the other hand, the interest is in determining how thick the padding is under the average passenger load (a measurement of padding left for "ride" and seated height), a second measurement to give an indication of initial softness, and a final figure to indicate resiliency. To most easily fulfill these requirements, load deflection on flexible urethane foams for automotive seating is determined here by measuring the thickness of the pad under fixed loads of 1 lb, 25 lb, and 50 lb on a 50 in2 circular indentor foot.
Standard

Load Deflection Testing of Urethane Foams for Automotive Seating

2007-08-13
HISTORICAL
J815_200708
Traditionally, cellular foam products have been checked for load deflection by determining the load required to cause a 25% deflection. In automotive seating, on the other hand, the load deflection is checked by determining the thickness under constant force conditions to (a) indicate the initial softness of the seat cushion, (b) measure how thick the seat cushion is under the average passenger load (a measurement of padding left for “ride” and seated height), and (c) determine a value to indicate resiliency. In this method these measurements are made by determining the thickness of the seat cushion under fixed loads of 4.5 N, 110 N, and 220 N with a 323 cm2 circular indentor foot.
Standard

Load Deflection Testing of Urethane Foams for Automotive Seating

2002-10-30
HISTORICAL
J815_200210
Traditionally, cellular foam products have been checked for load deflection by determining the load required to cause a 25% deflection. In automotive seating, on the other hand, the load deflection is checked by determining the thickness under constant force conditions to (a) indicate the initial softness of the seat cushion, (b) measure how thick the seat cushion is under the average passenger load (a measurement of padding left for “ride” and seated height), and (c) determine a value to indicate resiliency. In this method these measurements are made by determining the thickness of the seat cushion under fixed loads of 4.5 N, 110 N, and 220 N with a 323 cm 2 circular indentor foot.
Standard

Load Deflection Testing of Urethane Foams for Automotive Seating

1998-06-01
HISTORICAL
J815_199806
Cellular foam products have been traditionally checked for load deflection by determining the load required to effect a 25% deflection. In seating, on the other hand, the interest is in determining how thick the padding is under the average passenger load (a measurement of padding left for "ride" and seated height), a second measurement to give an indication of initial softness, and a final figure to indicate resiliency. To most easily fulfill these requirements, load deflection on flexible urethane foams for automotive seating is determined here by measuring the thickness of the pad under fixed loads of 1 lb, 25 lb, and 50 lb on a 50 in2 circular indentor foot.
Standard

Load Deflection Testing of Urethane Foams for Automotive Seating

2001-12-10
HISTORICAL
J815_200112
Traditionally, cellular foam products have been checked for load deflection by determining the load required to cause a 25% deflection. In automotive seating, on the other hand, the load deflection is checked by determining the thickness under constant force conditions to (a) indicate the initial softness of the seat cushion, (b) measure how thick the seat cushion is under the average passenger load (a measurement of padding left for “ride” and seated height), and (c) determine a value to indicate resiliency. In this method these measurements are made by determining the thickness of the seat cushion under fixed loads of 4.5 N, 110 N, and 220 N with a 323 cm 2 circular indentor foot.
Standard

Accelerated Exposure of Automotive Interior Trim Components Using a Controlled Irradiance Air-Cooled Xenon-Arc Apparatus

2012-11-19
CURRENT
J2212_201211
This SAE Recommended Practice specifies the operating procedures for a controlled irradiance, air-cooled xenon-arc apparatus used for the accelerated exposure of various automotive interior trim components. Test durations, as well as any exceptions to the sample preparation and performance evaluation procedures contained in this document, are covered in material specifications of the different automotive manufacturers.
Standard

Test Method for Determining Blocking Resistance and Associated Characteristics of Automotive Trim Materials

2002-07-26
HISTORICAL
J912_200207
This test method is designed to indicate the degree of surface tackiness, color transfer, loss of embossment, and surface marring when two trim materials are placed face to face under specific conditions of time, temperature, and pressure. These specific conditions are not dictated in this test procedure but will be found in the material standards which govern each type of trim material to be tested.
X